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Abstract

Although model checking has proven remarkably e�ective in detecting errors in hardware

designs, its success in the analysis of software speci�cations has been quite limited. Model

checking algorithms for hardware veri�cation commonly use Binary Decision Diagrams

(BDDs), a highly e�ective technique for analyzing speci�cations with the scores of Boolean

variables commonly found in hardware descriptions. Unfortunately, BDDs are relatively in-

e�ective for analyzing software speci�cations, which usually contain not only Booleans but

variables spanning a wide range of data types. Further, software speci�cations have huge,

often in�nite, state spaces that cannot be model checked directly using conventional symbolic

methods. One promising, but largely unexplored technique for limiting the size of the state

space to be analyzed by model checking is to extract a model with a smaller state space from

a complete speci�cation using sound abstraction methods. Users of model checkers routinely

analyze reduced models but most often generate the models in ad hoc ways. As a result, the

reduced models are often incorrect.

This paper �rst describes how one can model check a complete requirements speci�cation ex-

pressed in the SCR (Software Cost Reduction) tabular notation. Unlike previous approaches

which applied model checking to mode transition tables with Boolean variables, we use model

checking to analyze properties of a complete SCR speci�cation with variables ranging over

many data types. The paper also describes two sound and complete methods for produc-

ing abstractions from requirements speci�cations. These abstractions are derived from the

speci�cation based on the property to be analyzed. Finally, the paper describes how SCR re-

quirements speci�cations can be translated into the languages of Spin, an explicit state model

checker, and SMV, a symbolic model checker, and presents the results of model checking two

sample SCR speci�cations using our abstraction methods and the two model checkers.

�This work was supported by the O�ce of Naval Research. This report is an extended version of the paper

\Verifying SCR Requirements Speci�cations Using State Exploration," which appeared in Proc., First ACM

SIGPLAN Workshop on Automatic Analysis of Software, Jan. 14, 1997.



1 Introduction

During the last decade, model checking has proven remarkably e�ective for detecting errors in
hardware designs and protocols. Much of this success can be traced to the use of Binary Deci-
sion Diagrams (BDDs), an extremely e�cient technique for symbolically representing Boolean
formulae. Unfortunately, model checking has had only limited success in analyzing software
speci�cations, largely because software speci�cations routinely contain not only Booleans but
variables spanning a wide range of data types, including integers, reals, and enumerated types.
A further barrier is the huge, in many cases in�nite, state spaces that must be analyzed in model
checking software speci�cations. Due to these very large state spaces and the rich data types
commonly found in software speci�cations, BDD-based model checkers have proven relatively
ine�ective.
Before practical software speci�cations can be analyzed e�ciently by model checking, the state

explosion problem must be addressed, i.e., the size of the state space to be analyzed must be
reduced. The current users of model checkers generate such reductions routinely but almost
always in ad hoc ways [24]: the correspondence between the reduced models and the original
speci�cations is based on informal, intuitive arguments. One consequence of this informal process
is that the models analyzed by model checkers are often incorrect. For example, when Dill et al.
analyzed the errors detected by their model checker Murphi, they found that valid design errors
were very rare, whereas human errors in translating the original design to the model analyzed by
Murphi were frequent [38]. Hence, a serious problem is that reduced models generated informally
and by hand may not be true abstractions of the original design.
In contrast, our approach derives the abstract models systematically from the requirements

speci�cation and the formula to be analyzed. Users of our methods need not design the abstrac-
tions; instead, the abstractions can be derived automatically. With our approach, analyzing a
speci�cation for errors consists of three steps. First, our abstraction methods are used to pro-
duce an abstract model. Next, a model checker is executed to analyze the abstract model for
the property of interest. In the third step (required when the model checker detects a violation
of the property), the counterexample produced by the model checker is translated to a corre-
sponding counterexample in the original speci�cation. This last step is crucial because the user's
understanding of the system will be in terms of the original speci�cation rather than the abstract
model.
Our abstraction methods are designed for speci�cations expressed in a tabular notation called

SCR (Software Cost Reduction). For a number of years, researchers at the Naval Research
Laboratory have been developing a formal method based on the SCR notation to specify the
requirements of computer systems [19, 1]. The SCR method, originally formulated to document
the requirements of the Operational Flight Program (OFP) for the U.S. Navy's A-7 aircraft, was
introduced more than 15 years ago. Since then, many industrial organizations, including Bell
Laboratories [20], Grumman [32], and Ontario Hydro [34], have used the SCR method to specify
requirements. Recently, a version of the SCR method called CoRE [11] was used to document the
requirements of Lockheed's C-130J Operational Flight Program (OFP) [12]. The OFP consists
of more than 230K lines of Ada code [39], thus demonstrating the scalability of SCR.
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We have developed a formal state machine model to de�ne the SCR semantics [18, 14] and
a set of formal techniques and software tools to analyze requirements speci�cations in the SCR
notation [15, 16, 14]. The tools include a speci�cation editor for creating and modifying a require-
ments speci�cation, a consistency checker which checks the speci�cation for well-formedness (e.g.,
syntax and type correctness, no missing cases, no circular de�nitions, and no unwanted nondeter-
minism), and a simulator for symbolically executing the speci�cation to ensure that it captures
the customer's intent. Recently, we added a model checking capability to the toolset. Once
the user has developed and re�ned an SCR requirements speci�cation with our tools, he can in-
voke the Spin model checker [21, 22] within the toolset to analyze a speci�cation for application
properties. To make model checking feasible, the user can apply our abstraction methods to the
speci�cation prior to invoking Spin.
An early application of model checking to SCR requirements speci�cations was reported in 1993

by Atlee and Gannon, who used the model checker MCB [8] to analyze properties of individual
mode transition tables taken from SCR speci�cations [4]. More recently, Sreemani and Atlee [37]
used the symbolic model checker SMV [31] to determine whether the mode transition tables in
the original A-7 requirements document satis�ed assertions about combinations of modes. The
latter experiment demonstrates that model checking can analyze requirements speci�cations of
moderate size.
A major goal of our work is to generalize and extend some aspects of the earlier techniques for

model checking SCR requirements speci�cations. While the techniques of Atlee et al. are designed
to analyze properties of mode transition tables with Boolean input variables, the approach we
describe can be used to analyze properties of a complete SCR speci�cation: The properties to
be analyzed can contain any variable in the speci�cation, and we allow variables to range over
varied domains, such as integer subranges, enumerated values, and in�nite subranges of the real
numbers.
This paper makes the following contributions to the model checking of software speci�cations:

� In Section 3, a method is described for model checking complete SCR speci�cations rather
than individual mode transition tables. The variables in the speci�cation can have varied
types|e.g., Boolean, enumerated, integer, or real.

� In Section 4, two methods are presented for deriving abstractions from SCR speci�cations.
These abstractions are derived automatically from the formula to be analyzed and the SCR
speci�cation.

� In Section 5, methods are presented for translating an SCR speci�cation into both Promela,
the language of Spin, and the language of SMV.

Finally, Section 6 summarizes the results of our experiments with Spin and SMV, Section 7
discusses related work, and Section 8 describes our ongoing and future work.

3



2 Background

2.1 SCR Requirements Model

An SCR requirements speci�cation describes a system as a composition of a nondeterministic en-
vironment and a (usually) deterministic system [18]. The system environment contains monitored

quantities, environmental quantities that the system monitors, and controlled quantities, envi-
ronmental quantities that the system controls. The environment nondeterministically produces a
sequence of input events, where an input event signals a change in some monitored quantity. The
system, which is represented in our model as a state machine, begins execution in some initial
state. It responds to each input event in turn by changing state and by producing zero or more
system outputs, where a system output is a change in a controlled quantity. In SCR, we assume
that the system behavior is synchronous (similar to Esterel's Synchrony Hypothesis [5]), that is,
the system completely processes one input event before the next input event is processed.
In our requirements model, a system � is represented as a 4-tuple, � = (S; S0; E

m; T ), where
S is a set of states, S0 � S is the initial state set, Em is the set of input events, and T is the
transform describing the allowed state transitions [18]. In the initial version of our formal model,
the transform T is deterministic, i.e., a function that maps an input event and the current state
to a new state. The transform T is the composition of smaller functions, called table functions,
which are derived from the tables in an SCR requirements speci�cation. Our formal model
requires the information in each table to satisfy certain properties. These properties guarantee
that each table describes a total function.
In SCR, the required system behavior is described by NAT and REQ, two relations, of the

Parnas-Madey Four Variable Model [35]. NAT describes the natural constraints on the system
behavior, such as constraints imposed by physical laws and the system environment. REQ
describes the required relation between the monitored and the controlled variables. To specify
REQ concisely, the SCR approach uses four constructs { mode classes, terms, conditions, and
events. A mode class is a variable whose values are system modes (or simply modes), while a
term is any function of monitored variables, modes, or other terms. A variable is any monitored
or controlled variable, mode class, or term. The SCR requirements model includes a set RF =
fr1; r2; : : : ; rng containing the names of all variables in a given speci�cation, and a function TY
which maps each variable to the set of its legal values. In the model, a state s is a function that
maps each variable in RF to its value, a condition is a predicate de�ned on a system state, and
an event is a predicate de�ned on two system states. We say an event \occurs" when the value of
any system variable changes. The notation \@T(c) WHEN d" denotes a conditioned event, de�ned
as

@T(c) WHEN d
def
= :c ^ c0 ^ d;

where the unprimed conditions c and d are evaluated in the \old" state, and the primed condi-
tion c0 is evaluated in the \new" state.
To compute the new state, the transform T uses the values of variables in both the old state

and the new state. To describe the variables on which a given variable \directly depends" in the
new state, we de�ne dependency relations Dnew , Dold, and D on RF�RF. For variables ri and rj,
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the pair (ri; rj) 2 Dnew if r0j is a parameter of the function de�ning r0i; the pair (ri; rj) 2 Dold if rj
is a parameter of the function de�ning r0i; and D = Dnew [Dold. To avoid circular de�nitions, we
require Dnew to de�ne a partial order. Because they depend only on changes in the environment,
the monitored variables are �rst in the partial order. Because they can depend on any monitored
variable, term, or mode class, the controlled variables come last in the partial order. The mode
classes and terms come between the monitored and controlled variables. The assumptions that
the table functions are total and that the variables in RF are partially ordered guarantee that
the transform T is a function (at most one new system state is de�ned) and well-de�ned (for each
enabled input event, at least one new system state is completely de�ned) [14, 18].

2.2 Types and Dependencies Sets

To illustrate the SCR constructs, we consider a simpli�ed version of a control system for safety
injection [9]. Appendix A contains a prose description of the behavior of this system, three
tables taken from an SCR speci�cation of the required system behavior, and the table functions
that can be derived from the tables using our formal model. In the example system, the set of
variable names RF contains the three monitored variables Block, Reset, and WaterPres, the
mode class Pressure, the term Overridden, and the controlled variable SafetyInjection. The
type de�nitions include

TY(Block) = fOn; Offg
TY(Reset) = fOn; Offg
TY(SafetyInjection) = fOn; Offg
TY(Pressure) = fTooLow, Permitted, Highg
TY(Overridden) = ftrue, falseg

(The type de�nition of WaterPres, which has a large range of possible values, is given in Section
2.3.) The new state dependency relation Dnew for the example system is

f(SafetyInjection; Pressure);
(SafetyInjection; Overridden);

(Pressure; WaterPres); (Overridden; Pressure);

(Overridden; Block); (Overridden; Reset)g:

The partial order de�ned by Dnew is

< (Block; Reset;WaterPres);Pressure;Overridden;SafetyInjection> :

2.3 Models of the Monitored Variables

As noted above, the system behavior described by our model has a nondeterministic part and a
deterministic part. While the transform T is deterministic, the input events, which are produced
by the environment, are nondeterministic. The monitored variables involved in the input events
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may each be represented as simple �nite state machines with an initial state, a set of possible
states (de�ned by the function TY), and a next-state relation. For example, the monitored
variables Block and Reset in the sample system both have Off as the initial state, the set fOff,
Ong as the possible states, and the set f(Off, On), (On, Off)g as the next-state relation. One
possible model of the monitored variable WaterPres has an initial state of 14, possible values
de�ned by TY(WaterPres) = f0; 1; 2; : : : ; 2000g, and a next-state relation �wp, which allows
WaterPres to change by at most 10 units from one state to the next, i.e.,

�wp = f(x; x0) : 1 � jx0
� xj � 10; 0 � x � 2000; 0 � x0

� 2000g: (1)

An important assumption of our model, the One Input Assumption, states that only one
monitored variable changes at each state transition. Using the above models of the monitored
variables, we can show that when the sample system is in its initial state, all of the following input
events are enabled: @T(Block=On), @T(Reset=On), and @T(WaterPres=x), where 4 � x � 24
and x 6= 14. The One Input Assumption allows exactly one of these input events to occur at the
next state transition.

3 Verifying SCR Speci�cations

This section describes our use of model checking for veri�cation and error detection. By veri�ca-
tion, we mean the process of establishing logical properties of an SCR speci�cation. We specify
the properties as logical formulae. In this paper, we focus on a class of properties known as state
invariants. Each invariant may be either a one-state invariant, a property of every reachable
system state s 2 S, or a two-state invariant (also called a transition invariant), a property of
every pair of reachable states (s; s0), where s; s0 2 S and there exists an enabled input event
e 2 Em such that T (e; s) = s0. We focus on one-state and two-state invariants because they
are the properties most commonly found in speci�cations of practical systems we have studied
(e.g., the A-7 OFP [1], Kirby's cruise control system [28], and, most recently, a safety-critical
component of a Navy system).
In the following, we assume that a given SCR speci�cation satis�es application-independent

properties { that is, the speci�cation is type correct, the table functions derived from the speci-
�cation are total functions, etc. Such properties can be established using our toolset. For details
of how these checks are carried out, see [14].
To demonstrate the properties we would like to establish, we consider the following properties

for the safety injection speci�cation:

1. Reset = On ^ Pressure 6= High ) :Overridden

2. Reset = On ^ Pressure= TooLow ) SafetyInjection= On

3. Block = Off ^ Pressure= TooLow ) SafetyInjection= On

4. @T(Pressure= TooLow) WHEN Block = Off ) SafetyInjection0 = On
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The �rst three properties are all one-state invariants. The fourth property, a two-state invariant,
states, \If Pressure becomes TooLow in the new state and Block is Off in the old state, then

SafetyInjection is On in the new state."
To establish a formula q as a one-state invariant (two-state invariant) of a state machine, we

need to show that q holds in every reachable state (every reachable transition-pair of states) of
the machine. We do this by starting from the initial state and repeatedly computing the next
states until a �xpoint is reached. To compute the possible new states given a current state, we
need representations of the transform T and of the input events that trigger the state transi-
tions. Recall that the system transform T (which speci�es the new values of system variables)
is deterministic, whereas the state machines for monitored variables are nondeterministic. The
nondeterminism has two aspects: (a) at a given step, many monitored quantities are eligible to
change (i.e., are enabled) and (b) at a given step, a monitored variable may change in more than
one way.

3.1 Conditional Assignment

To compute the next states, we associate with each variable ri in RF, a conditional assignment
of the form:

if

2 gi;1 ! ri := vi;1
2 gi;2 ! ri := vi;2

...
2 gi;ni

! ri := vi;ni

fi

Here, gi;1; gi;2; : : : ; gi;ni
are boolean expressions (guards) and vi;1; vi;2; : : : ; vi;ni

are expressions
that are type compatible with variable ri. We de�ne the semantics of a conditional assignment
along the lines of the enumerated assignment of UNITY [6] { one assignment whose associated
guard is \true" is executed at each transition. If more than one guard is \true", then any
one of the associated assignments is nondeterministically chosen. If no guard is \true", the
variable value is left unchanged. To represent the functions de�ned by SCR tables, we allow
the expressions gi;1; gi;2; : : : ; gi;ni

and vi;1; vi;2; : : : ; vi;ni
to refer to both \old" and \new" values of

variables, provided that the \new" references are not circular.
For the control system example, the conditional assignment for the term Overridden is given

below. Conditional assignments for variables Pressure and SafetyInjection can be expressed
in a similar fashion.
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if

2 @T(Block=On) AND (Pressure=TooLow) AND

(Reset=Off) -> Overridden := true

2 @T(Block=On) AND (Pressure=Permitted) AND

(Reset=Off) -> Overridden := true

2 @T(Pressure=High) -> Overridden := false

2 @T((Pressure=TooLow) OR (Pressure=Permitted))

-> Overridden := false

2 @T(Reset=On) AND (Pressure=TooLow)

-> Overridden := false

2 @T(Reset=On) AND (Pressure=Permitted)

-> Overridden := false

fi

The following is the conditional assignment for the monitored variable Block. Conditional
assignments for the monitored variables WaterPres and Reset can be expressed in a similar
fashion.

if

2 (Block=Off) -> Block := On

2 (Block=On) -> Block := Off

fi

Note that if Block or Reset change at a given step, each can only change in one way. In contrast,
if WaterPres changes, it may change in many ways.

3.2 Computing the New State

Given a current state s and the conditional assignments for all monitored variables, we can
determine the set of input events that are enabled in s by evaluating each guard. Each guard
that evaluates to \true" along with the associated assignment determines an input event that is
enabled in s. Because the One Input Assumption only allows a single input event to occur at
each transition, one of the enabled input events e is selected nondeterministically.
The selected input event e and the current state s determine the new state s0. The values

of the monitored variables in the new state s0 are determined solely by the input event e. The
values of the other variables in the new state s0 (the mode classes, the terms, and the controlled
variables) can be computed from the conditional assignments for these variables. The partial
order determines the sequence in which the conditional assignments are evaluated. Because a
total function de�nes the value of each mode class, term, and controlled variable, exactly one
guard of each conditional assignment will evaluate to \true" and exactly one assignment can be
executed per variable.
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4 Two Abstraction Methods

By their very nature, the number of reachable states in practical systems is usually very large in
relation to their logical representation. Hence, for realistic software speci�cations, most �xpoint
computations fail to terminate because they run out of memory. Several techniques have been
proposed to combat state explosion in model checking. One approach proposed by Clarke et al.
in 1994 is to use abstraction [7]. Although abstraction could theoretically reduce a huge (and even
in�nite) state space to a much smaller state space, practical ways of deriving abstractions have
not emerged. In fact, the use of abstraction in model checking is widely regarded as impractical
(see, e.g., [25]).
Below, we describe two methods for deriving abstractions from SCR requirements speci�cations

based on the formula to be analyzed. Both methods are practical: Neither requires ingenuity on
the user's part, and each derives a smaller, more abstract model automatically. Further, each
method systematizes techniques that current users of model checkers routinely apply but in ad
hoc ways.
Applying our methods eliminates certain variables and their associated tables from the full

SCR speci�cation. Instead of model checking the full SCR speci�cation of the state machine �
for the property q, we model check an abstract SCR machine �A for a corresponding property
qA. (The abstract property qA is syntactically identical to property q, but because it is de�ned
over a projection of the domain over which q is de�ned, we call it qA.) Our abstraction methods
are both sound and complete. Given property q and state machine �, we say that �A is a sound

abstraction of � relative to q if qA is an invariant of �A implies that q is an invariant of �. Given
property q and state machine �, we say that �A is a complete abstraction of � relative to q if q
is an invariant of � implies that qA is an invariant of �A. Completeness is an especially desirable
property in model checking. Because most practical speci�cations are much too large to analyze
completely, the most useful function of model checking is to detect errors. Detecting an error
when the abstraction is complete means that any counterexample detected in the abstraction
corresponds to a counterexample in the original speci�cation.
To characterize the allowed state transitions of � below, we de�ne a next-state predicate �

on pairs of states such that �(s; s0) is true i� there exists an enabled event e 2 Em such that
T (e; s) = s0. The predicate � is simply a concise and abstract way of expressing the transform
T . The corresponding next-state predicate for �A is �A.

4.1 Abstraction Method 1: Eliminate Irrelevant Entities

This method uses the set of variable names which occur in the formula being analyzed to elimi-
nate unneeded variables and the tables that de�ne them (and the state machines in the case of
monitored variables) from the analysis. To apply this method, we identify the set O � RF of
variables occurring in formula q. Then, we let set O� be the re
exive and transitive closure of O
under the dependency relation D of an SCR speci�cation for state machine �. It is sound to infer
the invariance of q for � if qA is an invariant of the abstract machine �A with RFA = O

� and
if the system transform of �A, �A, is obtained from � by deleting all associated tables (or state
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machines in the case of monitored variables) for variables in the set RF �RFA. This abstraction
method is also complete. Therefore, we always apply this abstraction method automatically
before every veri�cation.
For example, suppose we are analyzing the invariance of property 1 in Section 3 for the safety

injection system. We identify the set of variables O occurring in the formula as

O = fPressure; Overridden; Resetg:

The re
exive and transitive closure of O under the dependency relation D for safety injection is
O

�, which is de�ned by

O
� = fPressure; Overridden; Reset; Block; WaterPresg:

Applying this abstraction method eliminates the controlled variable SafetyInjection, together
with its table, from the speci�cation of the state machine �. The reduced speci�cation describes
the abstract machine �A. Then, given an SCR speci�cation of the state machine � and the
property q, model checking the abstract machine �A for property qA is equivalent to model
checking the original machine � for property q (in this case, property 1).
Applying this method can signi�cantly reduce the size of the state space to be model checked.

Suppose that variable ri can be eliminated by this abstraction method and that the cardinality
of ri's type set is ki. Then, the size of the state space that needs to be analyzed can be reduced
by as much as a factor of ki. If ki is large, the amount of memory required to model check �A

may be considerably smaller than the amount of memory needed to model check �. Further, in
many cases, many variables may be eliminated by this method and hence the savings in memory
can be considerable, especially if some of the variables have large type sets.

4.2 Abstraction Method 2: Abstract Monitored Variables

Suppose that r is an monitored variable that does not appear in the formula q and that r̂ is
the only variable that depends on r. We de�ne the set of variables of the abstract machine as
RFA = RF �frg. That is, we simply remove r from the set of variables. In �A, the dependence
of r̂ on r is eliminated by treating r̂ as a monitored variable. The initial state(s), the set of
possible states, and the next-state relation for the new monitored variable can be computed from
r̂'s initial state and from the table in � de�ning r̂. We can generalize this method to eliminate
many input variables r1; r2; : : : ; rn from RF . This reduction can be performed if r̂ is the only
variable that depends on r1; r2; : : : ; rn and if none of the variables r1; r2; : : : ; rn appear in q.
To illustrate this abstraction method, we consider the safety injection system. The root cause of

state explosion when model checking this system is monitored variable WaterPres. We therefore
wish to eliminate this monitored variable. Studying the speci�cation of the safety injection system
in Appendix A reveals that WaterPres only appears in Table 3, the table de�ning the mode class
Pressure. Since WaterPres does not occur in any of the properties 1-4, nor in the tables
for variables Overridden and SafetyInjection, we may delete WaterPres, and the table for
variable Pressure when model checking properties 1-4. In constructing �A, we de�ne Pressure
as a monitored variable with initial state TooLow and the set fTooLow; Permitted; Highg as the
possible states. The next-state relation for Pressure, namely,
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f(TooLow; Permitted); (High; Permitted); (Permitted; High); (Permitted; TooLow)g,
can be computed from the table de�ning Pressure.
In this abstraction method, the values of the detailed variable r are organized into equivalence

classes by the abstract variable r̂. In the safety injection example, we can de�ne a function h

that maps the type set of WaterPres onto the type set of Pressure; that is, h is a mapping from
the set f0; 1; 2; : : : ; 2000g onto the set fTooLow, Permitted, Highg. The mapping h is de�ned by

h(WaterPres) =

8><
>:

TooLow if WaterPres< Low

Permitted if WaterPres� Low ^ WaterPres< Permit

High if WaterPres� Permit

(The constants Low and Permit are de�ned in Appendix A.) Clearly, h partitions the values of
WaterPres into three equivalence classes, one corresponding to each of the three possible values
of Pressure.
Because q is constant on every equivalence class, it is easy to see that this abstraction method

is sound. Given some mild restrictions on the relationship between two states in the same equiv-
alence class, this abstraction method is also complete. A su�cient condition for completeness
is that any state s in an equivalence class must be reachable in a �nite number of steps from
any other state ~s in the equivalence class. In the classes of systems we model, this condition can
usually be satis�ed. For example, in the safety injection system, if the abstract machine �A is in
its initial state, then the variable Pressure has the value Low. Consider a step in the abstract
machine triggered by a change in Pressure from Low to Permitted. Starting in the initial state,
the original machine �, which can only change WaterPres by at most 10 units from one state to
the next, will require many steps (at least 88!) to reach the Permitted range. The de�nition of
WaterPres's next-state relation, �wp (see (1) in Section 2.2) guarantees that the above condition
is satis�ed. That is, given any two values x; ~x of WaterPres in the same equivalence class, it is
possible in a �nite number of steps for WaterPres to transition from x to ~x.

5 Model Checking SCR Speci�cations.

This section describes how SCR requirements speci�cations can be translated into the languages
of two model checkers|the explicit state model checker Spin and the symbolic model checker
SMV.

5.1 Using the Spin Veri�er

Spin [21, 22] is a model checker which uses state exploration for verifying properties. Systems are
described in a language called Promela [21] and properties are expressed in linear-time temporal
logic (LTL) [30]. Spin has been largely used to verify communication protocols and asynchronous
hardware designs.

Promela, the language of Spin, is a notation loosely based on Dijkstra's \guarded commands"
[10]. Supported data types in Promela include bool (booleans), byte (short unsigned integers),
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and int (signed integers). Control statements include the assignment statement, statement skip
(which does nothing), sequential composition of statements, the conditional statement, and the
iterative statement. The language also has an assert statement.
Translating an SCR speci�cation to Promela proceeds as follows. Because Promela does not

allow expressions containing both \old" and \new" values of variables, we assign two Promela

variables to each variable in the SCR speci�cation. We call these the \new" and \old" variables.
Further, expressions containing the event notation @T(c) are translated into equivalent forms
involving the \old" and the \new" variables. We translate the conditional assignment for each
table into a Promela conditional statement, which computes the value of the \new" variable
at each step. The conditional statements are executed sequentially, in a predetermined order
consistent with the partial order induced by the new state dependency relation of the SCR
speci�cation. After all conditional assignments for table functions are executed and new values
assigned to all \new" variables, all \old" variables are assigned their corresponding \new" values.
Further, we perform an optimization based on the fact that the system transform of an SCR

speci�cation is a function. This ensures that all conditional statements for variables other than
the monitored variables are deterministic. Therefore, once we have selected an input event,
we may compute the new state in a single step. In Promela we specify this by enclosing all
the statements which correspond to the computation of the mode variables, the terms, and the
controlled variables in a d step (deterministic step) construct. This ensures that, for each input
event, only one state (i.e., the new state) is entered into the hash table which stores the reachable
states.
To generate Promela code corresponding to input events, we generate a nondeterministic condi-

tional statement for each monitored variable, which assigns any value in the variable's domain to
the \new" Promela variable. We \build in" the One Input Assumption by embedding all assign-
ments to monitored variables in a single (nondeterministic) conditional statement. Appendix B
presents the Promela code generated by the SCR* toolset (edited to enhance readability) for the
safety injection example.
To check a one-state invariant with Spin, we embed the invariant in a Promela assert state-

ment. Then, Spin checks the truth of the invariant in the initial state and in each generated
\new" state. To check a two-state invariant, one could express the invariant in LTL and invoke
the built-in translator of Spin to construct an equivalent never automaton. Since an SCR vari-
able's \new" and \old" values are explicitly assigned to two Promela variables, we avoid this
automaton construction for two-state invariants; instead, we check them directly in an assert

statement. An advantage of this approach is that invariant checking in Spin is computationally
more e�cient than checking properties expressed as never automata.
To combat state explosion, conventional partial order reduction methods avoid the exploration

of redundant interleavings by computing and keeping track of information about redundant
interleavings during state exploration [40, 13, 23]. In our approach, it is su�cient to evaluate the
next state using only one predetermined interleaving consistent with the partial order induced
by the new state dependency relation. This property is common to all SCR speci�cations [18].
Therefore, enabling Spin's partial order reduction algorithm will almost never reduce the space
requirement and may actually increase the required analysis time due to additional overhead.
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5.2 Using the SMV Model Checker

SMV [31] is a tool for verifying properties of system descriptions expressed in a special-purpose
language (also called SMV). Properties are expressed in the branching time temporal logic CTL.
A system is described in SMV as a set of initial states and a transition (next-state) relation. Users
may either use predicate logic or a more restricted description language to specify the transition
relation. Although predicate logic provides considerable 
exibility, its use can lead to inconsis-
tency { if a formula specifying the transition relation is a logical contradiction, many properties
will be vacuously true. Using only the restricted description language of SMV, which has a par-
allel assignment syntax similar to the notation of SCR, avoids this problem. For speci�cations
in the restricted language, SMV checks for multiple parallel assignments to a variable, circular
de�nitions, and type errors. These checks help ensure that all speci�cations in the restricted
syntax are consistent.
Our translation of SCR speci�cations into SMV uses the restricted language of SMV. Our

translation method is similar to that of Atlee et al. [3] but di�ers in two important ways. First, as
mentioned above, we translate complete SCR speci�cations comprising monitored and controlled
variables, mode classes, and terms, any of which may be of type Boolean, an integer subrange,
or an enumeration. In contrast, Atlee et al. translate mode transition tables with Boolean input
variables into SMV. Second, to check properties on two states, Atlee et al. introduce additional
SMV variables, which record values of state variables in the previous state. In contrast, we
encode two-state properties directly into CTL, using the algorithm of Je�ords [26]. This reduces
the number of state variables in half; therefore, our method can potentially reduce the memory
requirements for model checking by an exponential factor.
To translate an SCR speci�cation into SMV, we express the conditional assignment corre-

sponding to each table as an SMV case statement. This computes the value of the correspond-
ing variable in the \new" state. Because the system transform T of an SCR speci�cation is
deterministic, the guards of all conditional assignments corresponding to system variables (i.e.,
variables other than monitored variables) are mutually disjoint. For these variables, it is straight-
forward to translate a conditional assignment into an SMV case statement. Note that in SMV
a primed occurrence x0 of a variable x is denoted by next(x). Thus, the conditional assignment
for Overridden is translated into the following SMV construct:

next(Overridden) :=

case

(next(Block) = On & Block = Off &

Pressure = TooLow & Reset = Off) |

(next(Block) = On & Block = Off &

Pressure = Permitted & Reset = Off) : TRUE;

(next(Reset) = On & Reset = Off &

Pressure = TooLow) |

(next(Reset) = On & Reset = Off &

Pressure = Permitted) |

(next(Pressure) = High & !(Pressure = High)) |
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((next(Pressure) = Permitted | next(Pressure) = TooLow) &

!(Pressure = Permitted | Pressure = TooLow)) : FALSE;

1: Overridden; -- This means "otherwise Overridden"

esac;

Unfortunately, when more than one guard is \true", the semantics of the SMV case statement
di�ers from that of the enumerated assignment statement discussed in Section 3.1. In SMV, the
�rst assignment whose guard is \true" is chosen, rather than a nondeterministic choice of any
one of the assignments whose guards are \true". Therefore, when the guards of a conditional
assignment are not mutually disjoint, a straightforward translation would be incorrect. We model
nondeterministic choice by an explicit assignment of an arbitrary element among those in a set,
using the SMV syntax of set assignment which denotes this operation.
For example, in the safety injection system, Abstraction Method 2 may be used to eliminate

monitored variable WaterPres (see Section 4.2). The next-state relation for the mode class
Pressure may be expressed in SMV as follows:

next(Pressure) :=

case

Pressure = Permitted : {TooLow, High};

Pressure = TooLow : Permitted;

Pressure = High : Permitted;

esac;

We generate a nondeterministic SMV assignment that corresponds to the conditional assign-
ment of each monitored variable, and a deterministic assignment for each term, mode class, and
controlled variable. Unlike Spin, which executes conditional assignments sequentially, SMV per-
forms all assignments in parallel, i.e., in \one step". Therefore, unlike the Promela model, the
assignments in SMV may be ordered arbitrarily.
Unlike the translation to Promela, where we build the One Input Assumption and other re-

strictions imposed by NAT into the model, we encode NAT restrictions in SMV as predicates in
a \TRANS" section. For example, the encoding of the state machine for WaterPres has two parts
{ the assignment statement for WaterPres allows any value from its domain for the new state
(irrespective of WaterPres in the old state), while the predicate in the TRANS section restricts
this change to be at most 10 units. Appendix C presents the SMV code generated by this method
for the safety injection example.

5.3 Spin vs SMV

The relative merits of explicit state (also called concrete) model checkers, such as Spin, and
\symbolic" model checkers, such as SMV, has sparked considerable controversy. Explicit model
checkers compute the set of reachable states by enumeration (i.e., by \running the model"),
whereas symbolic model checkers execute the model symbolically by representing the set of
reachable states as a logical formula using a BDD. The state spaces of some hardware designs with
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a certain regularity in their structure have been shown to have very compact BDD representations.
For such systems, the space requirement using BDDs has a linear, rather than an exponential,
relationship with the number of state variables in the model. However, BDDs do \blow up"
(i.e., have an exponential space requirement) when the models are more irregular, which is often
the case in software speci�cations. Explicit state model checkers generally do better than BDDs
on descriptions of communication protocols and control systems. This is because the space
requirement of explicit state model checking is proportional not to the number of possible states
(as in BDDs) but to the number of reachable states, which are far fewer for such systems. Not
surprisingly, therefore, algorithms for explicit state enumeration seem to require less space than
symbolic algorithms when model checking SCR speci�cations.
We note that it is possible to construct an explicit state model checker with an exponentially

smaller memory requirement than the memory required by Spin in our experiments. In using
Spin, we were forced to declare two Promela variables for each SCR variable with a potentially
exponential increase in space requirements. (This limitation of Promela has nothing to do with
the explicit state enumeration algorithms of Spin.) Because the SMV language allows references
to both the \old" and \new" values of a variable, our SMVmodels avoided this problem. However,
in SMV, there is a potential for exponential BDD blowups for speci�cations containing integer
variables (such as the original Safety Injection speci�cation) because SMV does not handle integer
variables optimally [2]. As Anderson et al. show [2], a more optimal encoding for integer variables
in SMV is possible and may produce exponential reductions in space requirements.
Symbolic model checkers such as SMV provide counterexamples for two-state properties as

a linear trace, which may be di�cult to interpret because the property is expressed in CTL, a
branching time logic. However, symbolic model checkers have a distinct advantage over state
enumeration in one respect: Expressing constraints (such as environmental restrictions on mon-
itored variables) symbolically as logical formulae is more convenient than representing them as
state machines. It is natural to allow, and e�cient to implement, constraints expressed as logi-
cal formulae in symbolic model checkers. SMV allows users to intermix predicate logic with the
more restrictive descriptive language. However, because this opens up the possibility of specifying
logical contradictions, this feature should be used with caution.
Another advantage of SMV over Spin is that, when a property violation is detected, SMV is

guaranteed to produce the shortest possible counterexample. Spin provides an algorithm that
�nds short counterexamples, but the algorithm does not always �nd the shortest one. This is
because the symbolic model checking algorithms of SMV perform a breadth-�rst search of the
state space in contrast to the depth-�rst search performed by the algorithms of Spin. Explicit
state model checkers that perform a breadth-�rst search do exist; for example, the explicit state
model checker Murphi implements a breadth-�rst search. However, algorithms used to generate
counterexamples in symbolic model checking and explicit state enumeration by breadth-�rst
search are considerably more expensive and complex than the corresponding algorithm for explicit
state enumeration by depth-�rst search.
For many practical problems, a complete search of the state space (using either explicit state

or symbolic methods) is usually infeasible. In such situations, model checking remains useful
for error detection. Generally, we have found that explicit state methods are computationally
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less expensive than symbolic model checking for error detection, especially in cases where the
speci�cation is incorrect. The next section provides details.

6 Experimental Results

This section presents and discusses some results of our experiments with Spin and SMV. To eval-
uate the abstraction methods described above, we have applied them to several small examples
and to a more realistic SCR speci�cation.
For the safety injection speci�cation (SIS), we were able to establish properties 1 and 2. We

were also able to show that properties 3 and 4 are not invariants of the speci�cation. One of the
major problems in using model checking to evaluate abstract models is that counterexamples,
which are generated in terms of the abstractions, are often hard to interpret (see, e.g., [36]). We
had little di�culty interpreting counterexamples generated for abstractions of SCR speci�cations,
because they are couched in terms of variables in the original speci�cation. Also, since our
abstraction methods are sound and complete, a counterexample for a property will be generated
for the abstract machine if and only if the property does not hold for the original machine. We
view these as important advantages of our abstraction methods.
We recently applied our abstraction methods to a simpli�ed subset of the bomb release re-

quirements of a U.S. Navy attack aircraft [1]. The SCR requirements speci�cation of this system
describes conditions under which the aircraft's OFP is required to issue a bomb release pulse.
This speci�cation, called Bombrel, contains several seeded errors. In addition to uncovering all
the seeded errors with other tools in our toolset, we also established by model checking that the
original formulation of a presumed one-state invariant, \The aircraft should not drop a bomb un-

less the pilot has pressed release enable (property P in Table 2)," does not hold for the corrected
SCR speci�cation. In consultation with Kirby, the creator of the speci�cation, we reformulated
the property as a two-state invariant (property Q in Table 1) and veri�ed the restated property
using both Spin and SMV.
We ran these experiments on a lightly loaded 167 MHz Sparc Ultra-1 with 130 MBytes of

RAM. We used Spin Version 2.9.7 of April 18, 1997, and SMV r2.4 of December 16, 1994, in our
experiments. Our tool generated the Promela code automatically from the SCR requirements
speci�cations. The �rst abstraction method was applied automatically, while the second method
was applied manually. The abstract models produced were then analyzed automatically by the
toolset using Spin. Generation and analysis of the SMV model were carried out manually. (Both
the process of translating an SCR speci�cation into SMV and the application of the second
abstraction method are being automated.)

6.1 Discussion

Table 1 presents some of our veri�cation results. In Table 1, AM1 and AM2 refer to the two
abstraction methods. The symbol `1' in the table means that the corresponding model checker
ran out of memory before its evaluation of the given property was complete. Spin does better
than SMV (in terms of space and time requirements) for the complete SIS speci�cation. However,
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Verifying Properties With Spin

Speci�cation Property AM1 AM2 States Time Memory

SIS 1 or 2 459; 084 9s 16 MBytes

SIS 1
p

459; 084 10s 16 MBytes

SIS 1 or 2
p

160 0s 3:1 MBytes

SIS 1
p p

160 0s 3:1 MBytes

Bombrel Q 1 � �
Bombrel Q p

148; 354 2s 6:2 MBytes

Verifying Properties With SMV

Speci�cation Property AM1 AM2 BDD Nodes Time Memory

SIS 1 or 2 44,653 308s 34 MBytes

SIS 1
p

44,648 309s 34 MBytes

SIS 1 or 2
p

314 0s 0:9 MBytes

SIS 1
p p

251 0s 0:9 MBytes

Bombrel Q 1 � �
Bombrel Q p

1; 912 0s 0:9 MBytes

Table 1: Verifying SCR Speci�cations with Model Checkers.

SMV does somewhat better than Spin on the abstraction. As we expected, both Spin and SMV
consume much less space and time on the abstraction than on the complete speci�cation. For
Bombrel, both Spin and SMV ran out of space during model checking. As in the SIS example,
both Spin and SMV are able to model check an abstraction of Bombrel, and SMV does slightly
better than Spin.
Table 2 shows that our abstraction methods dramatically reduce the time and space require-

ments for counterexample generation. Moreover, the generated counterexamples are signi�cantly
shorter, and therefore more easily understood. For example, an initial run of Spin on an ab-
straction of Bombrel produced a counterexample with 104 states. The shortest counterexample
produced by Spin had 25 states. After examining this counterexample, Kirby manually shortened
the counterexample to 9 states. SMV, however, did better by producing a counterexample with
only 7 states.
We note that for the safety injection example, using Abstraction Method 1 to verify Property 1

has no e�ect on the number of states or the memory requirement. This is not surprising since
Abstraction Method 1 only eliminates a single Boolean variable SafetyInjection and hence the
space for storing each state remains una�ected. Further, since SafetyInjection is a function of
only the current state (recall that the table for SafetyInjection is a condition table), elimination
of the variable does not reduce the number of reachable states.

7 Related Work

Our approach to model checking SCR requirements speci�cations is a generalization and exten-
sion of the approach originally formulated and further developed by Atlee and her colleagues
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Generating Counterexamples With Spin

Speci�cation Property AM1 AM2 Length Time Memory

SIS 3 6 0:1s 2:5 MBytes

SIS 3
p p

6 0:1s 3:1 MBytes

Bombrel P 1; 383 315s 18 MBytes

Bombrel P p
25 1:1s 5 MBytes

Generating Counterexamples With SMV

Speci�cation Property AM1 AM2 Length Time Memory

SIS 3 4 309s 34 MBytes

SIS 3
p p

4 0s 0:9 MByte

Bombrel P � 13 Hrs ?

Bombrel P p
7 0:3s 1 MByte

Table 2: Detecting Errors in SCR Speci�cations With Model Checking.

[4, 3, 37]. The relationship between our work and Atlee's work is described above.
In [2], Anderson et al. use SMV to analyze a component of a preliminary version of the

TCAS II (Tra�c Alert and Collision Avoidance System) requirements speci�cation expressed in
RSML (Requirements State Machine Language). Like us, they de�ne schemas for translating
concepts underlying RSML (such as events, input variables, environment assumptions, and the
synchrony hypothesis) into suitable SMV constructs. Unlike our approach, their translation also
deals with hierarchical states and timing. (We have begun to support both hierarchy and timing
in SCR speci�cations; see, e.g., [16].) Another important di�erence between their approach and
ours is that their translation involved signi�cant manual e�ort (such as modi�cations to SMV
and the use of special-purpose macro processors). In contrast, we use both Spin and SMV \out
of the box".
The most signi�cant di�erence between the two approaches is in the way integer variables and

constants are handled. The problem is that of state explosion|since the encoding in SMV for
integer variables (and operations on them) is not optimal, the BDDs blow up, even in speci�ca-
tions containing just one or two integer variables. To solve this problem, Anderson et al. directly
encode integer variables as BDD bits and implement addition and comparison at the source code
level by de�ning parameterized macros which are preprocessed using awk scripts. In contrast,
we e�ectively avoid the problem by applying our correctness preserving abstraction methods to
speci�cations containing integer variables. Because we only model check the abstractions, the
state spaces in our examples appear to be up to an order of magnitude smaller than the state
spaces Anderson et al. analyze. In reality, the state spaces probably are comparable in size.
Our abstraction methods are most similar to those described by Clarke et al. [7] and are also

related to techniques proposed by Kurshan [29]. Clarke et al. represent each state as a vector
of variable values and all abstraction mappings are obtained by (simultaneous) abstraction of
the variables. Rather than variable abstraction, we do variable restriction|each of our methods
simply eliminates one or more of the variables in a speci�cation. Note that variable abstraction
can achieve the same e�ect as variable restriction if each variable to be eliminated is mapped to
a single value.
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For Clarke et al., any abstraction of an automaton M determines a corresponding minimal
abstraction forM calledMmin. The di�culty with usingMmin as an abstraction is that predicates
representing the initial states and the next states of Mmin may not exist. Hence, computing the
start states and the next states of Mmin can require references to the variables of M , which is
de�nitely something to avoid. To solve this problem, Clarke et al. de�ne an alternative machine
calledMapp (called an approximate machine) with the same states asMmin, but whose initial state
and next-state predicates can be obtained directly. It can be shown that Mapp is an abstraction
of M . Clarke et al. use a concretization function C to transform any property �A of Mapp into
a property � of M . Thus, to prove a property � of M , one must choose the abstraction map
h so that C(�A) = �. In contrast, in performing variable restriction, we provide two general
and automatable methods for �nding the abstraction map. Moreover, we construct the abstract
property �A from the original property � rather than the other way around.
Clarke et al. do not consider complete abstractions for a given machine and property; the

only version of completeness that they consider is exactness|simultaneous completeness for all
\interesting" properties of the machine, i.e., all properties that can be expressed in terms of the
primitive predicates of the machine. In contrast to our notion of completeness, exactness is not
useful in practice, because the number of states in the reduced machine is only marginally smaller
than the number in the original machine. Instead, our abstraction methods can dramatically
reduce the number of states.
Kurshan [29] generally deals with homomorphic reductions (i.e., many-to-one mappings) in

terms of the languages accepted by automata. However, he describes an equivalent notion of
homomorphism between automata, which he calls \state homomorphism", that is analogous
to our notion of abstraction. For state homomorphisms, Kurshan has notions of sound and
complete (\exact") abstractions analogous to ours. However, where we represent automata as
state machines and properties abstractly as state predicates, Kurshan represents automata as
labeled transition systems and properties of an automaton as acceptable execution sequences
(which can be viewed as a language of in�nite strings of transition labels). Hence, while Kurshan's
approach resembles ours at the abstract level, at the detailed technical level, his approach is very
di�erent and more complex than ours.

8 Conclusions

This paper has presented an approach based on the formal requirements model de�ned in [18]
for model checking complete SCR requirements speci�cations with a variety of variable types for
one-state and two-state invariants, the two classes of properties commonly found in speci�cations
of practical systems. The paper also proposes two abstraction methods that make the analysis of
SCR speci�cations practical and techniques for translating SCR speci�cations into the explicit
state model checker, Spin, and the symbolic model checker, SMV. Finally, the paper presents
some experimental results which suggest that symbolic model checking does not always perform
better than explicit state model checking in detecting errors in software speci�cations.
We have successfully applied our abstraction methods to a practical Navy system [17]. Our

abstraction methods for SCR work well in practice primarily because SCR speci�cations, if writ-
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ten and organized in accordance with the SCR method, already contain many useful abstractions.
Therefore, unlike other approaches where the abstractions that make veri�cation feasible must
be \reverse-engineered" from scratch, useful abstractions already exist or are easy to derive
(sometimes even automatically) for well-written SCR speci�cations.
As noted above, the translation of SCR speci�cations into the restricted language of SMV is

being automated. The importance of automatic translation cannot be overemphasized. Hand
translation of the speci�cations is highly error-prone; in fact, we made some subtle mistakes
that were caught because the results of model checking using Spin, where the translation was
automatic, were inconsistent with the results of model checking using a manual translation to
SMV.
We are extending our work in model checking SCR speci�cations in several ways:

� We are developing additional abstraction methods.

� We are developing formal underpinnings for our abstraction methods. In particular, we
have shown formally that the two abstractions methods described above are both sound
and complete for \SCR machines," the state machines described by the SCR requirements
model.

� We are designing algorithms to implement our abstraction methods: these algorithms au-
tomatically extract the abstraction �A and the property qA from the original SCR speci-
�cation and a given property q. (In the new abstraction methods that we are developing,
qA may not be syntactically equivalent to q.)

� We also are investigating the extent to which we can automatically check that the conditions
for completeness described in Section 4.2 are satis�ed.

� Finally, we are developing software that will automatically translate any counterexample
produced by model checking the abstraction �A into a corresponding counterexample in
the original speci�cation. Currently, we perform this translation manually; whether we can
produce \natural" counterexamples in a completely automatic way is an open question.

Our long-term goal is to combine the power of theorem proving technology with the ease of
use of model checking technology. The major problem with current theorem proving technology,
e.g., PVS [33] and ACL2 [27, 41], is that applying the technology requires mathematical sophis-
tication and theorem proving skills. The major problem with model checking is state explosion.
Clearly, theorem proving, in many cases, automatic theorem proving, can dramatically reduce the
number of states that a model checker analyzes. Our abstraction methods are mathematically
sound methods that can dramatically reduce the state space by eliminating information irrele-
vant to the property of interest and abstracting away unneeded detail. We are also exploring
other automated techniques that address the state explosion problem, including the automatic
generation of invariants and the use of powerful decision procedures.
To date, our requirements model has provided a solid foundation for a suite of analysis tools

which can detect errors automatically and make the cause of those errors understandable, thereby
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facilitating error correction. Such an approach should lead to the production of high quality
requirements speci�cations, which should in turn produce systems that are more likely to perform
as required and less likely to lead to accidents. Such high-quality speci�cations should also lead
to signi�cant reductions in software development costs.
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A Specifying a Simple Control System in SCR

The system, a simpli�ed version of a control system for safety injection [9], monitors water pressure

and injects coolant into the reactor core when the pressure falls below some threshold. The system

operator may block this process by pressing a \Block" switch. The system is reset by a \Reset" switch.

To specify the requirements of the control system, we use the monitored variables WaterPres, Block,

and Reset to denote monitored quantities, and a controlled variable SafetyInjection to denote the

controlled quantity. The speci�cation includes a mode class Pressure, a term Overridden, and several

conditions and events.

The mode class Pressure, an abstract model of WaterPres, has three modes: TooLow, Permitted,

and High. At any given time, the system must be in one and only one of these modes. A drop in water

pressure below a constant Low causes the system to enter mode TooLow; an increase in pressure above

a larger constant Permit causes the system to enter mode High. Table 3 is a mode transition table

which speci�es the mode class Pressure. In this example, the constants Low and Permit are assigned

the values 900 and 1000.

Old Mode Event New Mode

TooLow @T(WaterPres � Low) Permitted

Permitted @T(WaterPres � Permit) High

Permitted @T(WaterPres < Low) TooLow

High @T(WaterPres < Permit) Permitted

Table 3: Mode Transition Table for Pressure.

The term Overridden is true if safety injection is blocked, and false otherwise. Table 4 is an
event table which speci�es the behavior of Overridden. The expression \@T(Inmode)" in a row
of an event table denotes the event \system enters the corresponding mode". For instance, the
entry in the �rst row of Table 4 speci�es the event \the system enters mode High".

Mode Events

High False @T(Inmode)

TooLow, @T(Block=On) @T(Inmode) OR

Permitted WHEN Reset=Off @T(Reset=On)

Overridden True False

Table 4: Event Table for Overridden.

Table 5 is a condition table that speci�es the controlled quantity SafetyInjection. The table
states that \If Pressure is High or Permitted or if Pressure is TooLow and Overridden is true,
then SafetyInjection is Off; otherwise, it is On".
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Mode Conditions

High, Permitted True False

TooLow Overridden NOT Overridden

Safety Injection Off On

Table 5: Condition Table for Safety Injection.

By applying the de�nitions in [18] to Tables 3{5, we obtain the following table functions for
the mode class Pressure, the term Overridden, and the controlled variable SafetyInjection:

Pressure0 =

F4(Pressure; WaterPres; WaterPres
0g =

8>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>:

TooLow if Pressure = Permitted ^ WaterPres0 < Low ^
WaterPres 6< Low

High if Pressure = Permitted ^ WaterPres0 � Permit ^
WaterPres 6� Permit

Permitted if (Pressure = TooLow ^ WaterPres0 � Low ^
WaterPres 6� Low) _
(Pressure = High ^ WaterPres0 < Permit ^
WaterPres 6< Permit)

Pressure otherwise:

Overridden0 =

F5(Block; Reset; Pressure; Overridden; Block
0; Reset0; Pressure0g =

8>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>:

true if (Block0 = On ^ Block = Off ^
Pressure = TooLow ^ Reset = Off) _
(Block0 = On ^ Block = Off ^
Pressure = Permitted ^ Reset = Off)

false if (Reset0 = On ^ Reset = Off ^
Pressure = TooLow) _
(Reset0 = On ^ Reset = Off ^
Pressure = Permitted) _
(Pressure0 = High ^ Pressure 6= High) _
((Pressure0=Permitted _ Pressure0=TooLow) ^
:(Pressure=Permitted _ Pressure=TooLow))

Overridden otherwise
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SafetyInjection =

F6(Pressure; Overridden) =

8><
>:

Off if Pressure=High _ Pressure=Permitted _
(Pressure = TooLow ^ Overridden = true)

On if Pressure = TooLow ^ Overridden = false

B Promela code for safety injection

/* This file contains the PROMELA/spin version of an SCRTool specification. */

/* It is created by SCRTool and automatically fed to Xspin. */

/* However, this file was left in the file sis.spin */

/* for you to use, look at, etc. */

/*****************************/

/* numeric constants */

/*****************************/

bool TRUE = 1;

bool FALSE = 0;

#define TooLow 0

#define Permitted 1

#define High 2

#define On 0

#define Off 1

#define Low 900

#define Permit 1000

/*********************************/

/* variable declarations */

/*********************************/

byte Block = Off;

byte BlockP = Off;

bool Overridden = FALSE;

bool OverriddenP = FALSE;

byte Reset = On;

byte ResetP = On;

byte SafetyInjection = On;

byte SafetyInjectionP = On;

int WaterPres = 14;

int WaterPresP = 14;

byte Pressure = TooLow;

byte PressureP = TooLow;
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/***********************/

/* init function */

/***********************/

init {

/******************************/

/* main processing loop */

/******************************/

do

::

/*********************************/

/* specification asserts */

/*********************************/

/* (Reset = On AND Pressure = TooLow) => SafetyInjection = On */

assert((!((Reset == On) && (Pressure == TooLow))) || (SafetyInjection == On));

/**********************************************************************/

/* simulation of monitored variable changes; do one each pass */

/**********************************************************************/

if

::if

/* randomly select any value except the current one */

:: (Block != On) -> BlockP = On ;

:: (Block != Off) -> BlockP = Off ;

fi

::if

/* randomly select any value except the current one */

:: (Reset != On) -> ResetP = On ;

:: (Reset != Off) -> ResetP = Off ;

fi

::if

/* randomly jump to any value within the legal range of the variable */

:: ((WaterPres + 1) <= 2000) -> WaterPresP = WaterPres + 1 ;

:: ((WaterPres - 1) >= 0) -> WaterPresP = WaterPres - 1 ;

:: ((WaterPres + 2) <= 2000) -> WaterPresP = WaterPres + 2 ;

:: ((WaterPres - 2) >= 0) -> WaterPresP = WaterPres - 2 ;

:: ((WaterPres + 3) <= 2000) -> WaterPresP = WaterPres + 3 ;

:: ((WaterPres - 3) >= 0) -> WaterPresP = WaterPres - 3 ;

:: ((WaterPres + 4) <= 2000) -> WaterPresP = WaterPres + 4 ;

:: ((WaterPres - 4) >= 0) -> WaterPresP = WaterPres - 4 ;

:: ((WaterPres + 5) <= 2000) -> WaterPresP = WaterPres + 5 ;

:: ((WaterPres - 5) >= 0) -> WaterPresP = WaterPres - 5 ;

:: ((WaterPres + 6) <= 2000) -> WaterPresP = WaterPres + 6 ;

:: ((WaterPres - 6) >= 0) -> WaterPresP = WaterPres - 6 ;

:: ((WaterPres + 7) <= 2000) -> WaterPresP = WaterPres + 7 ;

:: ((WaterPres - 7) >= 0) -> WaterPresP = WaterPres - 7 ;

:: ((WaterPres + 8) <= 2000) -> WaterPresP = WaterPres + 8 ;

:: ((WaterPres - 8) >= 0) -> WaterPresP = WaterPres - 8 ;
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:: ((WaterPres + 9) <= 2000) -> WaterPresP = WaterPres + 9 ;

:: ((WaterPres - 9) >= 0) -> WaterPresP = WaterPres - 9 ;

:: ((WaterPres + 10) <= 2000) -> WaterPresP = WaterPres + 10 ;

:: ((WaterPres - 10) >= 0) -> WaterPresP = WaterPres - 10 ;

fi

fi;

/***********************************************************/

/* executions of the functions in dependency order */

/***********************************************************/

/* the PROMELA version of the Pressure function */

d_step{

if

/* modes: TooLow */

/* event: @T(WaterPres >= Low) */

:: (((!(WaterPres > Low)) && ((Pressure == TooLow) &&

(!(WaterPres == Low)))) && (WaterPresP > Low))

|| (((!(WaterPres == Low)) && ((Pressure == TooLow) &&

(!(WaterPres > Low)))) && (WaterPresP == Low))

-> PressureP = Permitted;

/* modes: Permitted */

/* event: @T(WaterPres < Low) */

:: (((!(WaterPres < Low)) && (Pressure == Permitted)) && (WaterPresP < Low))

-> PressureP = TooLow;

/* modes: Permitted */

/* event: @T(WaterPres >= Permit) */

:: (((!(WaterPres > Permit)) && ((Pressure == Permitted) &&

(!(WaterPres == Permit)))) && (WaterPresP > Permit))

|| (((!(WaterPres == Permit)) && ((Pressure == Permitted) &&

(!(WaterPres > Permit)))) && (WaterPresP == Permit))

-> PressureP = High;

/* modes: High */

/* event: @T(WaterPres < Permit) */

:: (((!(WaterPres < Permit)) && (Pressure == High)) && (WaterPresP < Permit))

-> PressureP = Permitted;

:: else skip;

fi;

/* the PROMELA version of the Overridden function */

if

/* modes: TooLow, Permitted */

/* event: @T(Block = On) WHEN Reset = Off */

:: (((!(Block == On)) && (((Pressure == TooLow) ||

(Pressure == Permitted)) && (Reset == Off))) && (BlockP == On))

-> OverriddenP = TRUE;

/* modes: High */

/* event: @T(Inmode) */
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:: ((!(Pressure == High)) && (PressureP == High)) -> OverriddenP = FALSE;

/* modes: TooLow, Permitted */

/* event: @T(Inmode) OR @T(Reset = On) */

:: ((!((Pressure == TooLow) || (Pressure == Permitted))) &&

((PressureP == TooLow) || (PressureP == Permitted)))

|| (((!(Reset == On)) && ((Pressure == TooLow) ||

(Pressure == Permitted))) && (ResetP == On)) -> OverriddenP = FALSE;

:: else skip;

fi;

/* the PROMELA version of the SafetyInjection function */

if

/* modes: High, Permitted */

/* condition: TRUE */

:: ((PressureP == High) || (PressureP == Permitted)) -> SafetyInjectionP = Off;

/* modes: TooLow */

/* condition: Overridden */

:: ((PressureP == TooLow) && OverriddenP) -> SafetyInjectionP = Off;

/* modes: TooLow */

/* condition: Not Overridden */

:: ((PressureP == TooLow) && (!OverriddenP)) -> SafetyInjectionP = On;

fi;

/*********************************************************************/

/* update each variable and mode class for this state change */

/*********************************************************************/

Block = BlockP; Overridden = OverriddenP;

Reset = ResetP; SafetyInjection = SafetyInjectionP;

WaterPres = WaterPresP; Pressure = PressureP;

}

od /* end of main processing loop */

}

C SMV code for safety injection

MODULE main

VAR

Block : {Off, On};

Reset : {Off, On};

WaterPres : 0..2000;

Pressure : {TooLow, Permitted, High};
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Overridden : boolean;

SafetyInjection : {Off, On};

DEFINE

Low := 900;

Permit := 1000;

ASSIGN

init(Block) := Off;

init(Reset) := On;

init(WaterPres) := 14;

init(Overridden) := 0;

init(SafetyInjection) := On;

init(Pressure) := TooLow;

next(Block) := {Off, On};

next(Reset) := {Off, On};

next(WaterPres) := 0..2000;

next(Pressure) :=

case

Pressure = Permitted &

next(WaterPres) < Low & !(WaterPres < Low) : TooLow;

Pressure = Permitted &

next(WaterPres) >= Permit & !(WaterPres >= Permit) : High;

Pressure = TooLow & next(WaterPres) >= Low &

!(WaterPres >= Low) | (Pressure = High &

next(WaterPres) < Permit & !(WaterPres < Permit)): Permitted;

1 : Pressure;

esac;

next(Overridden) :=

case

Pressure = TooLow & next(Block) = On &

Block = Off & Reset = Off |

(Pressure = Permitted & next(Block) = On &

Block = Off & Reset = Off) : 1;

Pressure = TooLow & next(Reset) = On & Reset = Off |

(Pressure = Permitted & next(Reset) = On & Reset = Off) |

next(Pressure) = High & !(Pressure = High) |

(next(Pressure) = TooLow | next(Pressure) = Permitted) &

!(Pressure = Permitted | Pressure = TooLow) : 0;

1: Overridden;

esac;

next(SafetyInjection) :=

case

next(Pressure) = High | next(Pressure) = Permitted |

(next(Pressure) = TooLow & next(Overridden)) : Off;

next(Pressure) = TooLow & !next(Overridden) : On;

esac;

TRANS

((next(WaterPres) - WaterPres >= 1 & next(WaterPres) - WaterPres <= 10 |

WaterPres - next(WaterPres) >= 1 & WaterPres - next(WaterPres) <= 10) &
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next(Block) = Block & next(Reset) = Reset) |

(next(WaterPres) = WaterPres & !(next(Block) = Block) &

next(Reset) = Reset) |

(next(WaterPres) = WaterPres & next(Block) = Block &

!(next(Reset) = Reset))

SPEC

AG((Reset = On & !(Pressure = High)) -> !Overridden)

-- AG((Reset = On & Pressure = TooLow) -> SafetyInjection = On)

-- AG((Block = Off & Pressure = TooLow) -> SafetyInjection = On)

-- AG((!(Pressure = TooLow) & Block = Off) ->

-- AX(Pressure = TooLow -> SafetyInjection = On))
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